size_t Does Matter

Hash Length Extension Attacks Explained

Mika Boström
<bostik@iki.fi>, <mika.bostrom@smarkets.com>
dc4420, 2015-10-29
Cryptographic Hash Properties

- Digest Size (n bits)
- Input Block Size (m bits)
- \(m > n \)
- Input processed block at a time
- Mutates internal state
- In other words: blocks are chained
- Merkle-Damgård: last block padded, includes number of bytes processed
Hash Length Extension

• "Append data to a keyed hash, without knowing the key, and calculate a valid hash with your data included”

• Or, programmer friendly:
 – $H_1 = H(key + data + padding)$
 – Transmit H_1, data
 – Attacker: append $EVILDATA$, calculate H_2
 – Transmit: H_2, (data+$EVILDATA$)
 – Receiver: calculate $H = (key + received\ data)$
 • $H = H_2$
SHA-1 Properties

- 160-bit output
- 512-bit input block
- Merkle-Damgård construct
 - Yes, that Merkle
SHA-1 Internal State

struct SHA1State {
 uint32 A;
 uint32 B;
 uint32 C;
 uint32 D;
 uint32 E;
}
struct SHA1State {
 uint32 A;
 uint32 B;
 uint32 C;
 uint32 D;
 uint32 E;
}
SHA-1 Final Hash
... visualised

Uint32 A Uint32 B Uint32 C Uint32 D Uint32 E
Keyed Hash

- Secret shared key
- Known payload data
- Hash = H(key + data)

Looks a bit like … salted hash?
Hash Extension Illustrated
Hash Extension Illustrated

- Key + padding missing
- Padding: includes number of bytes hashed
- Guess key length, calculate padding!
Hash Extension Illustrated

Initialize registers to known state...

Append own data...

And calculate new hash
Hash Extension Illustrated

- Hash is valid over the whole of preceding data, with the key prefixed
- Attacker did not need to know the shared key
- Effect of **EVIL DATA** depends on implementation
- *Would you guarantee your implementation handles every possible case of malformed but accepted-as-good input?*
Morale Of The Story

- Keyed hash as authentication method: broken
- Just use HMAC instead
- ... even with SHA-3
- ... because someone could plug a vulnerable hash into the construct

- Applied crypto is a world of cargo-culting
Trivia: Also Vulnerable

- MD5 (*d'oh*)
- SHA-256
- SHA-512
- RIPEMD-160
Trivia: Not Vulnerable

- SHA-384 (truncated)
- SHA-256/512 (truncated)
- SHA-3 (incomplete state export)
Code Gone Wild

- https://github.com/stephenbradshaw/hlextend
- https://github.com/bwall/HashPump
- https://github.com/iagox86/hash_extender_extender
- Just to name a few
Question Time